Por Bruno Mortara

Uma das dificuldades de se chegar aos valores da norma NBR NM ISO 12647-2 é descobrir exatamente o Aumento de Valor Tonal (antigamente conhecido como ganho de ponto e, hoje, como TVI) e fazer as correções adequadas no RIP antes da confecção das chapas de impressão.

Os concorrentes dessa categoria devem tentar atingir os valores colorimétricos especificados na norma e explicitados num conjunto de dados chamado FOGRA39, presente no site do International Color Consortium, ICC. Para conseguir uma boa colocação no prémio, os concorrentes têm que estabilizar seus processos com curvas de Aumento de Valores Tonais, TVI (Tonal Value Increase) similares às da norma que dá nome para a categoria. A atenção dos parâmetros e das tolerâncias é feita pelos jurados com instrumentos certificados e calibrados. Para se fazer a leitura dos valores requeridos, é solicitado aos concorrentes que não reflitam seus trabalhos e que os mesmos sejam acompanhados de uma tarja de controle, a consagrada Ugra/FOGRA Media Wedge V2.

A primeira dificuldade por que passam os gráficos que concorrem nesta categoria é o acerto de seus insumos. Devem buscar no mercado tinta conforme a ISO 2846-1 e papel de acordo com as especificações da ISO 12647-2.

Calibração dos sistemas

Uma vez obtidos os insumos adequados, o próximo passo é descobrir qual é a densidade de tinta úmida, de cada cor primária (CMYK) chapada que, quando seca, tenha valores colorimétricos dentro das especificações da ISO 12647-2. Essa pesquisa é feita através de um testform que também revela para aquela densidade ideal qual é a curva de aumento de valor tonal TVI daquela cor primária. Para o primeiro testform devemos utilizar chapas linearizadas, mas sem curvas de TVI aplicadas. É importante frisar que a utilização de uma curva correta de TVI é parâmetro de extrema importância para a normalização, uma vez que garante uma correspondência visual do produto impresso com uma prova de contrato. TVI — aumento de valores tonais nas áreas como da Figura 2. Para cada região de ajuste de tinta temos o controle de TVI (ganho de ponto) de 5%, 25%, 50%, 75% e 95% para cada uma das quatro cores primárias. É através da leitura desses patches — no local onde se obtém a colorimetria do chapado correspondente conforme a norma — que se constrói uma curva de compreensão de TVI.

Curvas Conformes

Em geral os RIPs modernos, que servem a sistêmica de CIP, oferecem a possibilidade de realização de dois tipos diferentes de correção do valor tonal. O primeiro, como dissemos acima, é a linearização com o qual se obtém uma saída de valores 1:1; o 50% fica com 50% na chapa e assim por diante. Essa calibração é necessária para a saída das chapas do primeiro testform. O segundo tipo de correção dos valores tonais acontece após a leitura do TVI (ganho de ponto) de 5%, 25%, 50%, 75% e 95% de cada uma das quatro cores primárias do primeiro testform. As curvas assim obtidas devem ser levadas ao sistema de RIP (Raster Image Process) e o sistema deve calcular o TVI final para que sua curva fique com a forma igual à da curva selecionada na Norma ISO 12647-2. Abaixo, estão as curvas esperadas segundo o tipo de papel utilizado na impressão, previstas na norma. Os papéis são classificados em cinco tipos: 1 e 2 são revestidos, o 3 é o LWC, o 4 é offset sem revestimento e o 5 é offset, sem revestimento e amarelado.

As letras em maiúsculo representam o nome das curvas no gráfico da Figura 3, cujas curvas devem ter os formatos indicados, APÓS a introdução dos valores de TVI obtidos no primeiro testform. Após a leitura dos pontos de amostragem, o software do RIP cria uma
Muitos fatores podem influenciar no aumento do valor tonal

tabela de correção para a calibração do processo, curvas estas que devem ter a forma de acordo com a Figura 4.

Fig.4: Curvas características para as cores primárias (CMYK) em vários tipos de papel de acordo com a ISO 12647-2

Na sala de impressão

Muitos fatores influenciam no aumento do valor tonal, entre eles as propriedades dos materiais utilizados e os parâmetros de impressão. Isso significa que o trabalho de se encontrar as densidades que resultam nos chapados adequados e coletar as curvas de correção de RIP pode requerer uma série de tentativas, acarretando uma certa frustração. Para se obter resultados consistentes, a sala de impressão deve estar em temperatura operacional, isto é, abaixo de 25°C, e a máquina impressora em condições ideais (blanquetas, pressão, molha – condutividade e Ph etc.).

Além disso, os chapados das cores primárias, CMYK, devem respeitar as especificações da norma. Esses valores são monitorados pela sua densidade de tinta úmida, uma vez que os valores colorimétricos das cores (exceto em sistema com secagem UV) podem mudar bastante nas primeiras 24h após a impressão. Isso impede que se faça um monitoramento por colorimetria, através de um espectroftômetro, durante a impressão. A variação dessas densidades influencia diretamente nos TVIs das cores e suas curvas, portanto deveriam permanecer o mais estável possível.

Outro requisito da norma é que o ponto máximo de uma curva de TVI não ultrapasse 5% de distância de nenhum outro máximo, nem para mais, nem para menos. Durante o processo de calibração, as ações executadas devem seguir o fluxo de trabalho da Figura 5.

Fig.5: Fluxograma de trabalho para a calibração segundo a ISO 12647-2

A fim de assegurar que as correções de valor tonal realizadas não resultem em perdas indesejadas de passos na escala de cinza das tonalidades corrigidas, é necessário que, no testform, estejam presentes elementos de avaliação do balanço de grises e elementos de degradados. Esses elementos do testform de impressão devem ser avaliados visualmente.

Conclusões - A recomendação de conformidade com a norma ISO 12647-2 vem ao encontro da necessidade de se evitar um grande número de tabelas de correção diferentes, residentes nos RIPS das empresas, cada tabela representando um processo de calibração para certa combinação impressora/papel/tinta.

Aconselha-se agrupar as máquinas por sua característica (impressorias antigas e novas, por exemplo) em torno de uma determinada curva de TVI.

Dessa forma, se mantém um certo grau de flexibilidade em relação às máquinas de saída, facilitando a vida do PCP. Todas as curvas, dentro das tolerâncias da norma ISO 12647-2, produzem resultados similares, visualmente e numericamente.

O principal benefício no fluxo gráfico é que os arquivos dos clientes da gráfica, produzidos desde a sua criação para as condições normalizadas (ISO 12647-2), podem ter os resultados previstos já nos sistemas de pré-impressão nos monitores calibrados ou nos sistemas de provas. E não há surpresas quando o trabalho é impresso.

Todo esse trabalho visa a obtenção de um ambiente de produção previsível, consistente e com qualidade máxima. Isso é o que efetivamente reduzirá tempo de acerto, materiais descartados, horas máquina e horas-homem e proporcionará, portanto, resultados financeiros palpáveis e a satisfação dos clientes.